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“The ideal, universal SAXS instrument is one which provides a tunable, narrow bandpass,
high flux on a small sample and obviates the need to correct the data for any distortion”
M.H.J. Koch; Makromol. Chem., Maromol. Symp., 15,79 (1988)
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1. The background

Simultaneous small and wide angle X-ray diffraction (SAXS/WAXS) techniques allows one
to investigate at different length scales the structure and dynamics of a wide range of systems on
interest in medicine, biology and materials science among others. The simultaneous SAXS/WAXS
techniques are one of the most frequently requested methods for studying structural and morphological
changes in real time. The principle of this combined method is the following. During the experiment,
two position-sensitive detectors are placed in different locations covering a wide angular range such as
~ 100 prad < 8 < 0.5 rad where 26 is the scattering angle. This means that about four orders of
magnitude in ¢ = (47/1)sin(6) are accessible. While WAXS provides information about the molecular
and atomic ordering of the material SAXS is sensitive to heterogeneities in the electron density on a
larger scale (1-10° nm). Nowadays, a step forward in this context requires to obtain such an
information with a milliseconds time resolution and with a real spatial resolution down to microns or
even nanometers. Beam sizes of few microns or even sub-um beams can have a strong impact on
fields such as life and materials science including here micro and nanotechnology.

The proposed beamline is expected to be a high resolution and high brightness beam provided
by an insertion device at ALBA providing a high brilliance x-ray beam (of the order of 10'7-10"
photons/s/(mrad)’/(mm)*). The beamline should deliver a low divergence highly collimated beam of
about 10 #m x 100 gm (vertical and horizontal, respectively) in an energy range optimized around
12.4 keV. A modular microfous optics will provide beam sizes in the #m and sub-um range upon
request. Small and wide angle cameras with associated linear and area detectors for static and time
resolved measurements would record the scattered radiation from samples under different and well
defined environments. Its modular arrangement will allow a choice between ultra small angle
scattering for large fibrous structures or microfocus illumination with simultaneous SAXS/WAXS
option for materials studies. At present, there is only one beamline (ID13 at the ESRF) providing the
microfocus option lacking capacity to take up the necessities of the scientific community. As an
example in the report on the meeting of the Soft Condensed Matter & Biological Materials of 24-25
April 2003 at the ESRF, the chairman, Prof. P. Fraztl, reported ID13 and ID02 as being the most
demanded beam lines on the committee. For none of these beamlines the request from all highest-rated
rank proposals could be satisfied.

2. The Spanish user’s community

In Spain there is a very active and well established community on non-crystalline diffraction with
synchrotron light in disciplines such as polymer science, colloid science and biological materials. The
research effort on the topic is reflected by the relative great amount of experiments carried out in the
different synchrotron facilities around the world including ESRF, DESY, ELETTRA, DARESBURY,
BNL etc. The Spanish user’s community, as inferred by the supporting groups of this proposal, has
reached a critical mass and includes a significant amount of staff people but also a significant number
of young researchers and PhD students which guarantee the future of this field in Spain (see annex I
for a precise description of some of the supporting groups). The scientific activity of the community is
reflected by a significant, stable but still increasing amount of papers(see annex II) during the last five
years, in the topics covered below by the scientific case(Fig.1), considering that Spain has not yet a
synchrotron facility. Moreover, the potential interest of using synchrotron light for non-crystalline
diffraction attracts an increasing amount of researchers (see annex III). Presumably, this interest will
grow significantly if the proposed facility is provided on ALBA. Part of this activity is reflected in the
Scientific Cases presented below which represent a snap-shot of the state-of-the art in the field.
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Fig.1: Scientific production of the Spanish user's community in the topics related to the scientific
case(dark blue). Those in which synchrotron light was used (lighter blue). Year 2004 is not completed.
The portugese group has also been included.

3. The scientific Case
3.1 Biological systems
Time-resolved X-ray fibre diffraction study on “live” muscle tissues

Time resolved X-ray diffraction studies on biological fibrous systems in conjunction with
synchrotron radiation provide essential information on the structure and dynamics of large molecular
assemblies in low order environment at time-scales ranging from milli-seconds to seconds. Over the
past 25 years our understanding of the structure and function relationship in skeletal muscle tissue
flows directly from the use of these techniques [1]. Recent advances in crystallography have revealed
the atomic structures of the muscle proteins, myosin heads and actin, that when assembled in the
native tissue are responsible for muscle contraction [2, 3]. Moreover, the physiological function of
muscle at the level of isolated tissue and single cells have been characterised in detail in vivo [4, 5].
However, our full understanding of the molecular basis for muscle contraction still remains largely
undetermined.

The muscle unit cell is very large, measuring in normal conditions more than 2300 nm, and
muscle tissues are weakly diffracting (fig.2). Consequently, this important biological system can only
be successfully investigated with a third generation synchrotron radiation source such as the Spanish
source ALBA. To make significant advances to our understanding of its molecular structure access to
an undulator beam line dedicated to SAXS/WAXS type experiments is necessary. The outlined
experimental station would permit to record with high spatial and time resolution changes to the
molecular ordering in space of the muscle proteins. Ultimately, the long-term aim is to develop a
molecular model that can explain the mechanical properties of muscle tissues and its ability to carry
out these functions through the conversion of free energy gained from the hydrolysis of ATP.



Fig.2: X-ray pattern of a relaxed sartorius muscle from Esculenta frog with an acquisition
time of 200 ms in ID2 at ESRF.
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Time-resolved studies and organization of the photosynthetic apparatus

One of the most used photosynthetic parameters in photosynthesis and plant physiology
laboratories is the estimation of the maximum potential photosystem II (PSII) efficiency
through measurements of chlorophyll fluorescence. Two different techniques are widely used,
modulated chlorophyll fluorescence[1] or continuous chlorophyll fluorescence[l, 2] by
measuring the shape of the chlorophyll fluorescence induction kinetics during a dark-light
transition, the so-called Kautsky effect. During a dark-light transition, the fluorescence level
first increases and then decreases with a time scale of seconds and minutes, respectively.
Although it is well known that the O to P changes are reflecting mostly the closure of the PSII
reaction centers and the P to T changes are dominated by the development of non-
photochemical quenching (related to PSII photo-protection), the molecular origin of these
changes is not completely known. The use of simultaneous measurement of chlorophyll
fluorescence yield (@) and lifetime (t) approached the elucidation of the origins of the different levels
of fluorescence during the Kautsky effect [2, 3]. Moise et al. (2004) conclude that the differences



found between ® and t during the Kautsky effect (i.c., the curvature of the t®relationship) are due to
a variable and transitory non-photochemical quenching [3]. They tentatively proposed that this
quenching results from a conformational change of a PSII core antenna pigment-protein complex
during the IP phase. Such conformational changes within the photosynthetic apparatus are susceptible
of being investigated by using simultaneously small and wide angle X-ray diffraction (SAXS-WAXS).

X-ray crystallography has revealed the structures of some protein complexes in the
photosynthetic membranes in remarkable detail, some from photosynthetic bacteria [4] and other from
higher plants [5]. Atomic force microscopy technique allows investigate whether X-ray structures are
true representations of the proteins in a natural membrane. In the photosynthetic bacteria Rhodobacter
sphaeroides, a network of linear clusters of specialized chlorophyll proteins is linked together by
dedicated light-harvesting proteins that form energy conduits only 20-30 nm wide [6]. As authors
stated “it is possible that under certain physiological conditions other organizations may occur”. Light-
harvesting complexes, such as the major LHCII from higher plants (see Figure 3 for structure) and
other minor complexes, experience conformational changes that play an essential role in the
development of the non-photochemical quenching, a process whose molecular basis is not fully
understood. A SAXS-WAXS line in the future Synchrotron ALBA would possibly contribute to
elucidate the organization of the photosynthetic apparatus of photosynthetic bacteria and higher plants.
Also, it would be used to further understand the non-photochemical quenching processes, one of the
most important regulation mechanisms in higher plants.

Figure 3. LHCII structure (image obtained from the web;
http://bio.winona.msus.edu/berg/IMAGES/LHCII.gif).
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Condensed chromatin within metaphase chromosomes



DNA is packaged in the cell nucleus bound to histone proteins forming a complex
supramolecular structure called chromatin. At present we only know the molecular structure of the
nucleosome, the fundamental subunit of chromatin. The nucleosome is a cylindrical body of ~11 nm
diameter and ~6 nm high that contains 160 bp of DNA in its periphery. The maximum degree of DNA
compaction is produced in the chromatids (~600 nm in diameter) of metaphase chromosomes during
mitosis [1]. Condensed chromosomes are responsible of the transfer of genetic information to the
daughter cells but at present we only have poorly defined models about their structure. The molecular
architecture of condensed chromatin inside metaphase chromosomes is completely unknown [2].

The local concentration of DNA in metaphase chromosomes is high [3]. However, most of our
knowledge of chromatin structure is based on experimental studies that have been carried out in
different laboratories using conditions that produce chromatin fibers having a low local concentration
of DNA [4]. Thus, an important long-term research objective is the study of the structure of condensed
chromatin with a high DNA density in metaphase chromosomes. It has been found previously that
small chromatin fragments containing from 5 to 35 nucleosomes form very compact cylindrical
structures of 30-40 nm diameter [5-8]. In more recent investigations it has been found that these
cylindrical bodies aggregate spontaneously and form high molecular mass structures [9] that are
similar to the structures seen in the periphery of partially denatured metaphase chromosomes [10].

The structural study of these high molecular mass aggregates and of the different higher order
chromatin structures of metaphase chromosomes will require the use of small angle X-ray diffraction.
The research group involved in this study has previous experience in the use of this technique in the
Daresbury Laboratory for the structural analysis of histone-DNA complexes of low molecular mass
[11] and of protein detergent complexes [12, 13].
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Amyloid fibril formation : biophysical studies

Amyloids are proteinaceous aggregates predominantly formed by B-structures which are
spatially organized as insoluble fibrils. Such fibrils have been identified as the main structural
components of neural plaques, the deposits found in the Central Nervous Systems of patients with
Alzheimer, spongiform encephalopaties and Huntington's disease, to quote just three of a number of
diseases associated to the presence of amyloids. In the case of Alzheimer's disease the peptides
involved in the formation of the neural plaques are the so called B-amyloid peptides (40-42 residues
long) whereas prions are the proteins associated to the development of spongiform encephalopaties.
The degree of primary homology between B-amyloid peptides and prions is very low. The similarities
of the amyloid structures that both types of proteins can form, however, has brought up the hypothesis
of the existence of a common mechanism of fibril formation. In all cases it seems that fibril formation
is always preceded by a conformational change which implies the conversion of some a-helical part of
the peptide or the protein into a B-structure. From that conversion on, it is believed that amyloid
fibrilization evolves via a nucleation process, but the structure of the nucleous (or protofibrils) and of
fibrils is not yet known in detail. On the other hand it is of particular interest the influence that two
important elements found in the neural plaques in vivo, cell membranes and glycosaminoglycans
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(GAGs), have on the alpha-beta conformational transition and in the formation of fibrils. Moreover,
recent studies provide evidence that shows that the interaction of amyloids with cell membranes may
take place at specific membrane microdomains, the so-called 'rafts', rich in cholesterol and
sphingolipids [1]. These lipidic microregions would have a diameter of the order of tens of nm. It
would be therefore advantageous to be able to use using non-crystalline material X-ray diffraction and
scattering techniques in order to obtain information on the influence on the structure of the different
kind of peptide aggregates (nucleus, protofibrils, fibrils) that amyloidogenic peptides form.
Simultaneous use of SAXS and WAXS microdiffraction could be of particular interest for a detailed
characterization of the complexes amyloid-'rafts', when biological membranes are present in the
system. The feasibility of applying X-ray techniques to the study of amyloid fibrils has already been
established [2].

General references

1. Lynn DG. and Meredith, SC. (2000) Review: model peptides and the physicochemical approach to beta-
amyloids. Journal of Structural Biology 130, 153-173.
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Alzheimer's and prion diseases. Exp. Rev. Mol. Med. 20 December,
http://www.expertreviews.org/02005392h.htm

Structure and lipid organization of cutaneous tissues

The outermost layer of the mammalian epidermis, the stratum corneum (SC), consists of thin
keratinized cells (cormneocytes) embedded in a lipid-enriched intercellular matrix organized in lamellae.
The main function of the SC, the barrier function, depends strongly on the specific structure of this tissue
[1]. Particularly, the barrier permeability is located in the lipid lamellar structure that mainly consists of
ceramides, free fatty acids, cholesterol and cholesterol sulfate [2]. A number of skin studies are based on
microscopy techniques [3]. However, some aspects related to the influence of the lipid composition on the
lipid lamellar organization require techniques that offer more detailed information and in which no sample
manipulation take place. Some studies about the lipid organization were carried out by X-ray scattering
using low energy sources, however the long time exposition of the sample to the X-ray beam made hardly
appropriate the technique [4]. More successful results have been published by use of SAXS and WAXS
using synchrotron radiation. These studies have demonstrated the SC lipids are organized in two
coexisting crystalline lamellar phases: the short periodicity of approximately 6 nm and the long
periodicity phase with a periodicity of approximately 13 nm. The 13 nm lamellar phase and its
predominantly orthorhombic lipid packing are considered to be crucial for the skin barrier function and
their presence is strongly dependent on the lipid composition [5,6]. Recently a controversy has been
opened about the correct description of this lamellar phase. This question, and the specific role of each
lipid in the lamellar structure and consequently in the functionality of the SC must be still clarified. These
facts are probably related with the presence of microdomains in the lipid structure that could be resolved
by simultaneous use of SAXS and WAXS microdiffraction. The microdomain size could be of the
order of a few micrometers, therefore micrometer size beam (1 micrometer X 1 micrometer) at the
sample would be required to resolve this question. The use of a microfocus beam is also necessary to
gain correct information on the structure that in those systems with the available size spot can only be
conjectured if it corresponds to a mixture of structures or to separate domains. In fact synchrotron x-
ray microdiffraction has resulted very appropriated to study similar systems [7], the reduction of the
focus size in the proposed microfocus beam could report even more interesting results in the field of
the biological nanostructured systems. Sample stage micropositioning, including tilting, would be
required for these studies as well as temperature and humidity control. The detection system should
allow for 2D simultaneous recording of SAXS and WAXS.

General references

1. H. Schaefer and T.E. Redelmeier, in S. Karger (Ed.), Skin Barrier. Principles of Percutaneous Absorption.
Switzerland, pp 55-77 (1996).
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Res. 33: 301 (1992).
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4. 0. Lopez, M. Cocera, L. Campos, A. de la Maza, L. Coderch, J.L. Parra. Use of wide and small angle x-ray
diffraction to study the modifications in the stratum corneum induced by octyl glucoside. Colloid Surface,
A., 162: 123 (2000).

5. N. Ohta, S. Ban, H. Tanaka, S. Nakata, I. Hatta, Swelling of intercellular lipid lamellar structure with short
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3.2 Materials science
3.2.1 Polymer Science

Polymer Crystallization: necessity for millisecond resolution and microfocus

For many years nucleation and growth as a stepwise process has dominated discussions about

polymer crystallization under quiescent conditions [1]. In contrast to this view a multi-stage process
[2] or a spinodal-assisted crystallization process [3-5] has been recently proposed. These ideas have in
common that crystallization of polymers is preceded by ordered precursors. In recent years this point
has been subjected to an important and still open debate [6, 7]. In order to resolve this problem it is
necessary perform experiments using third synchrotron light source employing detector with a low
noise level enabling <10 ms time resolution[8]. In this way, weak molecular order events occurring in
the induction period of crystallization could be precisely characterized.
In the case of shear-induced crystallization so-called shish-kebab structures occur, in which
oriented molecules serve as precursor of primary nucleation and form the shish [9,10]. Further
knowledge about the mechanism of the early stages of shear-induced crystallization is of great
importance not only for our fundamental understanding of polymer crystallization, but also
for the industrial processing of polymers. The structural and morphological evolution of
shear-induced crystallization precursors can be spatially resolved by simultaneous small- and
wide-angle X-ray microdiffraction [11]. The sample can be scanned through the beam along a line
with um-range steps (see the fig. below). A small X-ray beam divergence (less than about 0.2x0.2
mrad®) allows recording both the WAXS and SAXS signals together in the same pattern [12]. This
would allow one to perform innovatively accurate data analysis.

(b) (c)
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Fig.3. Optical micrograph of a perturbed semicrystalline i-PS sample, showing schematically a linear
raster-scan with 5 um raster-increment through the perturbed zone (line YZ).
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Structure formation in liquid crystalline polymers

A class of organic solids of particular interest is that of liquid crystalline polymers (LCP). The
great variety of molecular architectures which are nowadays available offer a rich series of
thermotropic behaviors leading to a great variety of mesomorphic structures including main chain [1]
and side chain [2] and cholesteric [3] liquid crystalline polymers. The existence in these systems of
significant molecular order controls most of the physical properties including rheology, mechanical
properties and dynamics among others. Moreover, cholesteric liquid polymers may exhibit interesting
self-associative phenomena of potential interest in biomolecular recognition [3, 4]. An special case is
that of conducting discotic liquid crystalline (LC) materials. These materials might serve as active
electronic components in future devices [5]. In general, the structure, molecular orientation and hence
physical properties of liquid crystalline polymers depend strongly on processing, especially such
properties related to the anisotropy of the sample. Of fundamental interest is the investigation of skin-
core effects on processed samples, like for example, extruded filaments under different processing
conditions, as well as the time and spatially resolved ordering developed during the phase transition
from the liquid crystalline phase to the solid state during the spinning process and in thermal
treatment.

Some experiments performed at ID13 (ESRF) with a beam size of 5 um show that for
conducting discotic liquid crystalline polymer filaments the skin presents a higher degree of
orientation than the core [6]:

HBC-Cy,

k- \ kQ\

skin core

Fig.4. WAXS patterns of a discotic liquid crystalline polymer filaments taken in the core and in the skin.
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Multi-component materials: Polymer blends& Microstructure of interphases

One of the main areas in the design and development of new polymeric materials with
outstanding properties is that of multi-component systems. This kind of materials include polymer
blends, copolymers and composites with the incorporation, very recently, of innovative components
such as nanofillers or carbon nanotubes as reinforcements. The final performance of the resulting
systems depend not only on composition and processing conditions but also on the existence of
interactions or phase separation between the components, and on the physical state of each component
at the temperature of application. Adding a compatibilizing agent, such as a diblock copolymer, to a
polymer blend can improve its stability. The incorporation of reinforcements, fillers or other polymers
to a crystallizable polymer matrix will affect the crystallization behavior of the matrix with the
formation, in some cases, of particular morphologies at the interphase which can significantly
influence the properties of the materials [1, 3]. The understanding of the role of the different variables
in the development of the crystalline structure and morphology at the interphase is very important in
order to establish their relevance in material performance and to design new technological
applications. The use of simultaneous small and wide angle X ray microdiffraction can be a very
valuable tool to study the nature and structure of the interphase in these complex multi-component
polymeric materials with the possibility of scanning sections in the order of microns and to establish
the influence on it of the different components and of the thermal and mechanical history imposed [4-
6]. The synthesis of polymer composites based on reinforcing natural fibres such as cellulose is a field
of increasing interest [7]. Plant fibres present the advantage of a low cost and ease of recycling. In
addition, the combination of natural based fibres with biodegradable polymers such as thermoplastic
starch or poly(lactic acid), offers attractive environmentally friendly materials [8, 9]. The surface of
plant fibres is covered with pectin and waxy substances, which should be removed for a good adhesion
with polymeric materials. Hence, plant fibres usually undergo a chemical treatment to modify their
surface. The effect of the chemical modification on the fibre structure and the composite properties,
together with the compatibility between fibre and matrix is nowadays an issue of great concern [10,
11]. Micro-focus X-ray diffraction could be used to elucidate the nature of the natural fibre-matrix
interphase. In addition, the structural variations within the micron or sub-micron scale across the fibre
diameter could also be distinguished using microdiffraction.
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Multi-component materials: Polymer foams

Closed cell polyolefin foams are two phase materials in which contiguous air bubbles are
entrapped in a macromolecular phase (figure 1). These heterogeneous materials have found a wide
range of applications. It is widely accepted [1,2,3] that the physical properties of these materials
depend on factors such as density, chemical composition, cellular structure and polymer morphology.
Nowadays, there are more or less detailed studies about the effect of density, chemical composition
and cellular structure [1,2]. However, the effect of the polymer morphology has not been completely
understood yet.

In order to use the existent models to predict the physical properties, it is necessary to know
the properties of the polymer which comprises the cell walls of the foams. These properties are not
known and it is assumed that the properties of the same polymer crystallised in a solid sheet can be
used instead. The polymer in the foam crystallises in exceptional conditions, it is a crosslinked
stretched thin film (2-10 um thick) which crystallised in the presence of a gas. Therefore, it should be
expected that the polymer in the cell walls could have a different morphology and consequently
different properties to those of a solid sheet of the same material. A previous paper using
microdiffraction with synchrotron radiation [4] analysed the morphology and deformation behaviour
of a single strut of open cell polyurethane foams showing some interesting and non expected features
concerning the morphology of this amorphous polymer. The case of polyolefins is even more intricate
due to the closed cell structure and semi-crystalline morphology of the polymer matrix.

The long-term aim is to characterise the morphology of the polymer in single cell walls and
struts of a collection of polyolefin foams with different densities [5,6] and chemical compositions.
This morphology would be compared with that of solid sheets of the same materials. The final aim is
to understand the relationships between the structure and properties for these foamed materials, critical
aspect in the development of new materials with improved properties. It would be also possible, for
the first time, to obtain realistic information on the morphology of semi-crystalline closed cell foams.

» . "
9 ‘¢

Fig.5. a) General view of the cellular structure of a typical closed cell foam, b) Cell walls and strut
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Multi-component materials: Block and graft polymers

Block copolymers [1,2,3] are of great scientific interest due to their self-assembled supra-
molecular structures formed under various conditions. In diblock AB copolymers, the well-known
phase morphologies include lamellae, double gyroids, cylinders, and spheres. Many ordered phases
have also been observed in ABC type block copolymers. This self-assembling characteristic of block
copolymers make then as potential candidates as templates in nanotechnology [4]. Besides
amorphous-amorphous diblock copolymers, liquid crystalline-amorphous diblock copolymers and
semicrystalline-amorphous diblock copolymers have obtained substantial attention, because molecular
and supra-molecular self-assemblies can form at different length scales. In crystalline-amorphous
diblock copolymer systems, there are three factors that determine the final phase and crystalline
morphology of these diblock copolymers, i.e. the microphase separation of a diblock copolymer (the
order-disorder transition temperature, Topr), the crystallization of the crystallizable blocks (the
crystallization temperature, T.), and the vitrification of the amorphous blocks (the glass transition
temperature, T, ). In this type of copolymers, both unconfined and confined crystallization can be
observed. The structural characterization of block copolymers can be adequately assessed by WAXS-
SAXS techniques [3]. Morover, the use of a microfocus facility may enable characterization of
individual phases as well as interfacial regions.
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3.2.2 Polymers under external fields
Mechanically induced structure modification

Synchrotron X-ray sources can be use to monitor in-situ the deformation processes in
polymeric materials[1,2] in order to characterize: i) the evolution of the crystalline phase morphology;
ii) craze formation and development; iii) cavitation/voiding phenomena; iv) crack tip dynamics; v)
interphase deformation. In fact, these types of studies require the use of multi-scale length structure
sensitive techniques (e.g., simultaneous WAXS and SAXS), high time resolution (mainly for high
strain-rates deformations) and high spatial resolution (due to the localized nature of the events). The
understanding of the deformation process and the establishment of structure-properties relationships
are of paramount importance since it allows: i) the optimization of processing methods (e.g., those
involving stretching); ii) the maximization of end-user mechanical performance; iii) the development
of advanced materials and processes; iv) designing and customizing materials to the function.
Experiments which carry out by simultaneous SAXS/WAXS using synchrotron radiation in
combination with a symmetrical tensile stretching machine allows one to measure the stress-strain
curve and the corresponding changes in microstructure in real time during uniaxial deformation. As an
example[3,4] the figure below shows the deformation of an initially isotropic block copolymer
containing segmented Poly(butylene terephthalate) and Poly(tetra methylene oxide). The impact of
these measurements on material performance and mechanical failure is self-evident.

14



Stress (MPa)

SAXS

4E

5 num
5 6 7 WAXS

Fig.6 Stress-strain curve for PBT-PTMO copolymer at room temperature. The panels show, for
specific values of strain and stress, the simultaneously collected WAXS (upper) and SAXS (lower)
patterns. On the left-hand side of each panel is the corresponding photograph of the sample during
drawing.
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Electrically induced structure formation

The wavelength of light represents a fundamental technological barrier to the production of
increasingly smaller features on integrated circuits. New technologies that allow the replication of
patterns on scales less than 100nm need to be developed if increases in computing power are to
continue at the present rate. A simple electrostatic technique that creates and replicates lateral
structures in polymer films on a submicrometer length scale has been already reported [1, 2]. The
method is based on the fact that dielectric media experience a force in an electric field gradient. Strong
field gradients can produce forces that overcome the surface tension in thin liquid films, inducing an
instability that features a characteristic hexagonal order. In these experiments, pattern formation takes
place in polymer films at elevated temperatures, and is fixed by cooling the sample to room
temperature. The application of a laterally varying electric field causes the instability to be focused in
the direction of the highest electric field. This results in the replication of a topographically structured
electrode. Simultaneous scanning USAXS and uWAXS experiments will be of interest in order to
spatially resolve the molecular order induced at different length scales. In addition, in situ scanning
USAXS experiments, during application of voltage and temperature and during the subsequent
annealing, could be performed in order to follow the different processes of structure formation.
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Fig.7. Optical micrographs of polystyrene films which have been exposed to an electric field. In a and
b, a 93-nm-thick polystyrene film was annealed for 18 h at 170 °C with an applied voltage U = 50 V.
The colours arise from the interference of light, and correspond to the local thickness of the polymer
structures.
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Black, M.T. Tuominen, T.P. Russell, Science 290, 2126 (2000)

Mechanical Surface Deformation

Indentation hardness offers a convenient way to probe the mechanical properties of a polymer
surface [1]. The key advantage of microindentation is the ability to test the material surface in its
original assembly, which is of fundamental importance for thin films, coatings, etc. In addition,
microhardness offers the possibility to spatially map the mechanical properties in the micron or sub-
micron range. It is now well substantiated, through a number of well established correlations, that
hardness of polymers is directly related to the degree of crystallinity and crystal lamellar thickness
among other nanostructural parameters [1]. However, there is still very limited information concerning
the mechanism of deformation.

Recent simultaneous microindentation and microdiffraction experiments in single polymer
fibres using a synchrotron radiation source suggest that the main structural change occurring during
indentation is associated with local variations in the crystal orientation, which partially recover upon
load release [2, 3]. It has also been shown that plastic deformation may also involve a partial
polymorphic transformation [2, 3].
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Fig.8 (A) Schematic design of in-situ microindentation experiment on an UHMW-PE fiber. (B) Evolution
of 110 orthorhombic reflection during microindentation: at a critical force the 110 reflection splits up
into two domains returning to a single domain when the indenter is retracted. Selected azimuthal
profiles of the 110 reflection are shown to the right.

However, the above mentioned studies relate to well oriented materials, and there is still no
direct information on the mechanism of deformation in isotropic systems. Moreover, the possible
nanostructural variations upon indentation such as lattice strains, variations in the size of the crystal
blocks, etc, have not been explored in detail so far.

There is a clear tendency nowadays to prepare polymeric materials with enhanced physical
properties via a chemical or physical combination of various components at a micro, sub-micro or
nanoscopic level. In an analogous way, indentation techniques have progressively developed new
instrumentation to probe smaller sample volumes. However, there is still the fundamental need to
understand the mechanism of deformation. The local ability of microbeam (or sub-microbeam)
techniques to spatially resolve the polymer nanostructure is indeed of great value to provide
information on the mechanism of deformation in polymer materials upon indentation.
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Non-conventional polymer processing

Polymer structure and morphology arer determined, at some extent, by the thermomechanical
environment imposed during product manufacturing. In fact, the control of the processing induced
morphology is a convincing route to enhance the mechanical behaviour of polymeric materials[1-2].
This can be achieved by non-conventional injection moulding techniques, where the in-mould shear
manipulation of the melt during the solidification phase originates a high level of molecular/fiber
orientation and constrains the crystalline structure development. SCORIM and PUSH-PULL
techniques only differ on the mode of application of the in-mould shearing, resulting a typical
microstructure featuring several highly oriented outer layers and a central spherulitic core[1-2] (Fig.1).
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The novel RCEM mould opens new possibilities on the control and manipulation of polymer
morphology[3], originating unusual microstructures. The underlying principles governing structure
development at all length scales need to be understood to enable materials designing and
customization to function. X-rays synchrotron sources with microfocus facility are therefore
fundamental characterization tools as they allow real time measurements with high real space
resolution.

Conventional SCORIM Push-Pull

e ©Oe O

Core

Flow direction

Skin

Fig. 9 - WAXS and SAXS patterns of the skin and core layers of injection mouldings: conventional
injection moulding, SCORIM (shear controlled orientation in injection moulding) and Push-Pull.
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3.2.3. Microdiffractometry

The advent of synchrotron radiation sources has provided sufficient flux and beam qualities
for crystal structure determinations from micrometer-sized crystals (or “microcrystals”) [1]. With the
development of third generation synchrotron radiation sources, very intense hard X-ray beams in the
pm-range have become available with an acceptable divergence for single crystal experiments [2].
This allows to probe very small crystals of less than 250 pm’ [3,4] and in exceptional cases sub-pm®
volumes [5]. One can therefore select crystals from powder grains (even from heterogeneous samples)
for data collection and structure determination. This is particularly interesting for cases where
structure determination from powder data was previously unsuccessful or where Rietveld analysis
does not provide the required structural information. In case of polymer materials, depending on
polymerisation conditions, microparticles of crystalline habit have been observed[6] and investigated
at the microfocus beamline ID13 of ESRF [7]. It is expected that single microcrystals of many soluble
polymers could be also investigated by microdiffractometry.
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3.2.4. Micro and Nanotechnology.
Nanocomposites in food packaging

Of special interest are polymers used in the food-packaging sector where outstanding gas
barrier properties to oxygen and organic compounds (solvents and food aromas) are required. The
major drawback of these materials is their moisture sensitivity that causes a significant decrease in
their gas barrier properties at high relative humidities [1-3]. Hence, most commercial applications are
designed as multilayer structures, where the polymer is sandwiched between highly hydrophobic
materials such as polyolefins. Although, these structures provide high barrier properties, the present
trend to commercialize extended shelf-life preservative-free food products is promoting a continuous
search for enhanced barrier materials. The addition of nanoclays is thought to result in ultrahigh
barrier properties mainly due to a tortuosity driven decreased in molecular diffusion of gases and
vapors and in increased thermal resistance. The characterization by means of X-Ray scattering
methods of these kind of nanocomposites allows one to extract information about the degree of
exfoliation and intercalation of the clay platelets which may control properties such as the thermal
resistance, glass transition temperature, crystallinity and barrier properties to oxygen [4].
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Carbon nanotube reinforced composites

The development of carbon-nanotube and carbon-nanofibre reinforced polymer composites
not only offers unique opportunities to improve the physical and mechanical properties of a given
matrix but also allows the evaluation of the intrinsic properties of the reinforcing nanoscale phase. The
use of carbon nanotubes and vapour-grown carbon nanofibres as reinforcements has already been
shown to improve the mechanical properties of various polymer matrix systems [1, 2]. Standard
polymer processing can often be used satisfactorily for these nanocomposites and does not break down
the reinforcement material, an issue commonly encountered in short-fibre-composites, which can limit
recyclability. Furthermore, initial studies have indicated that the small size of the nanoscale
reinforcement allows an enhancement of the properties of delicate structures such as polymer fibres [3,
4]. The key technical challenges which remain for such carbon-nanotube and nanofibre-reinforced
polymers are the achievement of a homogeneous dispersion, good interfacial bonding and a controlled
degree of alignment Current approaches towards increasing the orientation of the nanoscale
reinforcement within the polymer matrix range from optimisation of the extrusion die to stretching the
composite melt to form fibres [3, 4]. In addition, changes in the morphology of semicrystalline
thermoplastic polymers due to the presence of carbon nanotubes (CNT) and nanofibres (CNF) have
been observed [5]. Processing techniques that lead to oriented polymers can induce different
crystallization behaviours, but the effects of carbon nanotubes or nanofibres on such oriented polymer
systems, although significant [5], have not yet been fully established. Interactions of the nanoscale
reinforcement with the matrix during processing and the resulting effects on overall composite
performance need to be considered when attempting to evaluate the intrinsic properties of the
reinforcement. The above scientific and technical challenges are therefore aimed at exploiting
synchrotron radiation microdiffraction facilities to clarify some of the crucial aspects of such novel
nanocomposites. The use of locally resolved uyWAXS and uSAXS is expected to allow a more
detailed investigation of the polymer microstructure as a function of filler type and loading fraction
across the fibre diameter. In addition, the study of the deformation behaviour of such nanocomposites
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during in-situ X-ray experiments should deliver fundamental insights into the nature of the
reinforcement effect of nanotubes and nanofibres.
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Nanostructured Composites Based on Thermoplastic Polymer Blends

Over the last few decades, short glass- or carbon-fiber—reinforced composites have found
widespread application as injection-molded components in the automobile and in other technical
industries. The practical importance of these composites is beyond any doubt. However, they are
inherently heterogeneous since the matrix is a thermoplastic resin (organic material) in which an
inorganic reinforcing phase is embedded. The latter may cause a faster wear of the processing
equipment, as well as some problems in recycling whose importance is expected to grow significantly
in the near future. Unlike the classical glass- or carbon-fiber—reinforced polymer-based
composites, in recently developed nanostructured polymer-polymer composites (NPPC) the
reinforcing elements are fibrils of flexible, organic macromolecules embedded in a thermoplastic,
isotropic matrix[1,2]. Both the fibrils and the matrix are created in situ, through (i) orientation by
drawing of a solid blend consisting of polymers with different melting ranges and (ii) selective melting
of the major phase component, keeping the temperature below the melting point of the higher-melting
component thus preserving its oriented microfibrillar structure. Depending on the chemical
functionality of both the matrix and the fibrils, chemical reactions may take place resulting in the
formation of a copolymeric interphase. The latter plays the role of a compatibilizer[3]. The mechanical
properties of lab-scale NPPC are quite promising[4]. Compression molded NPPC exhibit Young’s
moduli and tensile strengths of up to 30-50% higher than the weight-average values of the
components. The values are comparable to those of short glass-fiber—reinforced composites having the
same matrix. This makes NPPCs attractive for many industrial applications. Our goal is to turn the
NPPC technology into a cost-effective, large-scale process for transformation of virgin, waste and
recycled thermoplastics. This will require a great deal of research in order to establish the optimal
relation between the nanostructure of NPPC and their mechanical properties. Our previous
measurements[5,6] at the A2 beamline of HASYLAB and ID13 of ESRF have shown that
simultaneous and microfocus SAXS/WAXS measurements are fundamental for the optimization of the
stage of selective matrix isotropization of NPPC, for choosing an adequate injection molding
technique, as well as for determining of its conditions.
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Nanofilms: Ordering phenomena in confined environments

From a fundamental point of view, the understanding of the development of structures and the
reorganization of the polymeric chains in confined environments is challenging. This type of studies
becomes relevant when they are directed towards specific problems in applied polymeric materials in
which a profound knowledge of these structural features can serve as a tool to control the properties
and performance of these systems. In this regard, thin film polymeric materials are of considerable
interest due to applications in microelectronic and to the possibility of inducing specific properties at
surfaces [1,2]. Multilayer systems combine different materials with control layer sequences in order to
attain or improve a particular property [3]. Moreover, the possibility of including polymeric chains in
crystalline channel structures in which the diameter of the cavities are of the order of nm has been
demonstrated and a significant reorganization of the structures and morphologies of these polymers is
observed after the confinement in nanochannels [4,5]. Small and wide angle X-ray microdiffraction
experiments performed simultaneously will allow to obtain detailed structural information on this type
of materials, with the possibility to focus in particular areas with um resolution, and to determine the
differences in morphology and structure induced at the surfaces, or between layers, or after
confinement in nano-channels [6,7]. It has been shown that the combination of grazing-incidence
small-angle X-ray scattering with a micrometer-sized X-ray beam (LGISAXS) is a powerful thin-film
characterization method and allows to gain two orders of magnitude in spatial resolution compared to
conventional GISAXS experiments [9, 10].

[ .

Fig.10 uGISAXS pattern of a self-assembled nanometer-sized gold cluster layer on top of thin polymer
layer on a silicon substrate [10].
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3.2.5 Carbon fibers

Activated carbon fibers: Structure-properties relationship

Activated carbon fibers (ACF) are porous carbons with a fiber shape and a well-defined
porous structure which can be prepared with a high adsorption capacity. The main characteristics and
advantages of the ACF are the following: i) They have both high apparent surface area and adsorption
capacity. ii) They have fiber shape with a small diameter (ranging between 10-40 p), which are very
important characteristics for new applications requiring higher packing density (i.e gas storage). iii)
ACF are light materials and can be easily woven into different fabrics (i.e., cloths, felts,...). iv) The
pore size distribution of the ACF is narrow and uniform, being essentially microporous materials,
although mesoporous ACF can also be prepared and v) The narrow diameter essentially eliminates
mass transfer limitations, being the adsorption-desorption rates very rapid.

An issue of special relevance for the characterization of the ACF is their fiber shape, since it
introduces differences on the porous texture compared to the conventional AC. In fact, it is not only
important to determine the pore volume and pore size distribution of the ACF, but also the distribution
of the pores across the fiber diameter, what will be a result of the activation process (i.e., activation
temperature, activation method, activating agent) and the precursor used. Although a remarkable
effort has been done on the porosity analysis and structural characterization of the ACF, the research
on pore distribution within the fibers is scarce and very recent, since it requires a technique with a high
spatial resolution. An additional aspect of great relevance is to understand the process of porosity
development through in-situ techniques.

In this sense, Small Angle X-ray Scattering (SAXS) technique offers some advantages for the
characterization of the porosity in activated carbons, such as it is sensitive to both closed and open
porosity. Another important advantage is that SAXS intensity profiles are sensitive to shape and
orientation of the scattering objects so that additional information can be obtained in anisotropic
studies in oriented samples such as fibers. The spatial resolution needed to accomplish the above
objectives can be reached through the use of beams of micrometer size, what results in the micro-
SAXS technique. The high intensity of the beams that can be obtained nowadays should also permit to
make studies with a sufficiently high temporal resolution, being useful to follow in-situ the reactions
involved in porosity development.

Consequently, there exists a link between structure of the precursor and porous texture of the ACF
which needs to be well-understood to optimize the preparation. Moreover, it is essential to be aware of
a second relevant issue, which is the relationship between porous texture and properties of the ACF,
such as adsorption and mechanical properties, as it has been mentioned before.

We have dedicated an important effort to analyze the distribution of porosity across the fiber
diameter in isotropic pitch-based carbon fibers and, recently, in anisotropic carbon fibers by using
micro-SAXS [1-4]. These studies have been very useful to understand the differences among
preparation methods and precursors. There is still an important piece of work to be done on this area,
especially regarding the use of this technique to follow, in-situ and with a spatial resolution close to
micrometer, the development of porosity during the preparation process.
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3.3 Colloidal systems
Interfacial transport phenomena

Equilibrium properties of surfactant system mixtures are, probably, quite well understood at
present. In contrast, there is a lack of knowledge on non-equilibrium processes and in the kinetics of
phase transformation, particularly in phenomena that take place at an interfacial level when different
systems are mixed. These processes play an important role in the properties of thermodynamically
unstable systems such as emulsions and vesicles or liposomes and in their preparation methods [1].
Understanding the processes of emulsification can allow for a better control of their properties. Low
energy emulsification methods have attracted increasing interest, not only because of energy savings,
but also as a way to control their properties (e.g. particle size and stability) [2]. Closely related to the
emulsification process is the liposome solubilization by surfactants and the reconstitution of these
vesicles by either surfactant removal or dilution [3]. Liposome solubilization by surfactants is
important because their application as a simplified model of biological membranes and delivery
systems [4] and the reconstitution process is a useful method to insert proteins in lipid bilayers [5].
Thus, the knowledge of the interfacial transport phenomena at the initial steps and the transient states
during these processes can give light about the conditions in which these controlled emulsification
processes are successful or fail.

In this sense, the construction of a beam line specialised in micro focus scattering-diffraction
would be useful to perform experiments in which two liquids are contacted. This would allow to
follow the kinetics of structural transitions at the moment and at the concentration-gradients present in
real systems. The information gained up to now in this type of processes rely on stopped flow
techniques, where only a mean after mixing can be achieved [6, 7]. Also experiments in which a solid
is contacted by a liquid could give information on the dynamics of solubilisation of materials
deposited on the substrate. The need of the microfocus stands both on the distance resolution of the
experiment and on the possible inhomogeneities that can be established in the systems, therefore a
beam with size of 1 micrometer at least in one axis would be required. In order to measure kinetics the
beam intensity and detector time resolution should be adequate to get a time resolution of the order of
10 seconds in a 2D SAXS detector. Sample positioning should be able to resolve to better than 1
micrometer. These experiments would require the use of stopped flow and continuous flow equipment.
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Microfocus approximation to single particle scattering/diffraction

The use of a microfocus beam coupled with small angle and wide angle X-ray detection with a
high time resolution can allow for the investigation of isolated particles. The usual way to investigate
isolated particles involves high dilution of the system to eliminate the interparticle interference
contribution [1]. However, not always it is possible to achieve a high dilution without changing the
structure of the system. The use of microfocus can allow investigating the form factor of single
particles. The investigation of single particles has also the advantage of the resolution of structures
without the always present size polidispersity that always obscure the form factor information. If the
time resolution is not good enough, immobilisation techniques of the particles, either on solid substrate
or by increasing the medium viscosity, would be needed. The systems where this technique would be
applicable correspond to any field of the colloid science. In particular, information about the
mechanism of liposome or emulsion solubilisation could be improved [2]. Droplet flocculation and
coalescence could also be studied in detail.

The ideal beam size for the type of experiments proposed here would be as small as possible
but, getting to sub-micrometer beam size, would already be useful for single particle scattering-
diffraction. A sample of 0.1 mm thickness containing Smg/L of particles with 100 nm radii would
require a beam of Imicrometer x 1 micrometer. The detector should allow for acquisition times below
0.1s and the flux at the sample should be enough for detection of single particle with reasonable signal.

General references:
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Phase transitions induced by temperature jump in colloidal systems.

Temperature jump, heating or cooling can induce important changes in the structures present in
surfactant based colloidal systems. The characteristics of the jump and of the phases crossed during
the jump can involve important differences in the final (non-equilibrium) state of the system. This is
key, for instance, in the formation of emulsions by temperature change. Depending on the speed of
heating the droplet size of the emulsion formed can be very different or, even, the emulsion can not
form at all but reach a different aggregation state. In the particular case of highly concentrated water-
in-oil emulsions we have observed, by time resolved X-ray Scattering measurements performed at
ELLETRA, the formation of intermediate states in the system. The time evolution of the system
during a temperature jump is shown in the figure. Although with the achieved time resolution (0.5s)
hints about the correspondences of the non equilibrium structures with the equilibrium structures could
be made. Detailed differences between these two different (dynamic and static) structures could not be
made. The final structure of the emulsions depended on the details of the jump speed, but no detailed
conclusions could be drawn on this point.

Other systems where temperature jump can play a role is on the formation of temperature
induced vesicle formation and in general in the formation of any non-equilibrium structures.
The time resolution of the experiment should be enough to assure the detection of intermediate
structures with good enough statistics. Thus high dynamic range detectors (about 5 orders of
magnitude) with time resolution of about 1ms should be available to improve those experiments.

24



oi

water
oO—— gg T=30°
water

Fig.11. Evolution of the x-ray scattering curves for the composition 92% H20, 3% C12EO9 and 5%
C10H22. The line is a guide for the movement of the correlation peak. At low temperature the
scattering curve is compatible with O/W microemulsion (R=12.0nm), at intermediate temperatures a
bicontinuous structure is compatible with the curves (lamellae 7.5nm thickness) and at high
temperature a highly concentrated water-in-oil structure is compatible with the curves. The correlation
peak corresponds to the continuous phase structure and the Porod behavior at low q corresponds to
the emulsion droplets scattering (R>100nm) [1,2].
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Dynamics of phase transitions induced by compositional change

This kind of processes is widespread in technological applications; from painting drying to the
emulsification of concentrates to the vesicle reconstitution by dilution. The dynamics and the phase
changes during the process will influence the micro and nanostructure of the final composition if this
corresponds to a metastable non-equilibrium state [1]. Knowledge of non-stationary stages will allow
for control of the final properties. This is the case of miniemulsions formed by microemulsion dilution
with excess water. Preliminary experiments in an in-house Kratky SAXS camera coupled with a
home-built continuous-flow stopped-flow mixing device are shown in the figure [2].
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Fig.12. Time resolved experiment in a microemulsion.

In the case shown in the figure, a time resolution of about 5 second seems enough to study the
system. Systems like fast coagulation of colloidal particles would need shorter time resolution,
probably below 0.1 second.
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Role of the electrostatic charge on the kinetic of the first steps of liposome-surfactant interaction:
adsorption of surfactant and desorption of mixed micelles

The solubilization of liposomes by surfactants has been described as a three-stage process:
vesicle saturation, formation of mixed micelles and complete solubilization [1,2]. However, the initial
fast steps of solubilization, which consist in the adsorption of surfactant on the membrane and
desorption of mixed micelles from the membrane, are not still clear due to the lack of techniques with
experimental timescale short enough. The study of the effect of ionic lipids on the kinetic of these
processes is essential for two reasons: biological membranes contain ionic lipids and a number of
biological processes are related with mechanisms of adsorption (fusion, endocytosis, viral infection, etc)
and desorption (exocytosis of synaptic vesicles, secretion of membranous vesicles, etc) [3].

Experiments performed at the ELETTRA Synchrotron in Triestre point out that if surfactants
and lipids have the same type of electrostatic charge the adsorption of surfactant on the liposome is
slower and the release of mixed micelles from the liposome surface is faster than when the species are
oppositely charged [4,5]. Thus, it seems that the electrostatic charges could either accelerate or slow
down these processes. However, in order to confirm this hypothesis future research should raise
experiments in which the amount of charge, the lipid composition and the type of surfactant mimic the
real biological membranes conditions. In this sense the technique of small angle x-ray scattering
(SAXS) for time resolved using a stopped flow cell and Synchrotron radiation is required. The beam
intensity and detector time resolution should be adequate to get a time resolution of about 10™* sec and
stopped flow and/or continuous flow devices are also required. The use of this sensitive methodology
opens up new possibilities for the control of processes containing surfactants and lipids from both
biological and physical-chemical perspectives.
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4. The requirements

Nowadays there are several beam lines in the world involved in non-crystalline diffraction
(ID2, ID13, BM16, BM26 at ESRF; 5-ID, 18-ID at APS; X27C at BNL, A2 at DESY etc). Among
them only ID13 and the beam line 11 proposed for DIAMOND are specifically designed to provide
microfocus facility.

The nature of the users’ community with a broad spectrum of research interest ranging from
biological to polymer materials suggest the necessity of a beam line at ALBA dedicated to the non-
crystalline diffraction with high brightness, high spatial and time resolution, providing in addition a
mocrofocus facility. The incoming radiation should provide from an insertion device located at a
proper segment of the machine in order to cover the characteristics of the beam presented below.
Microfocus should be provided as a module to be inserted when either illumination of very small
samples or spatial resolution were required.

Characteristics of the beam

Insertion Device: According to the initial calculation on the lattice for ALBA
(http://www.cells.es/home2.html) five different types of insertion devices have been considered
including two kind of wigglers and three of undulators. The use of at least a vacuum undulator will be
required due to the higher flux and to the lower divergence in comparison with undulators at
atmospheric pressure.

Brillance: 10'-10" photons/s/(mrad)*/(mm)*

Energy range: Continuous from 0.2 nm (6 keV) through 0.08 nm (16 keV) to 0.07 nm (20 keV)
optimized for 0.1 nm (12.4 keV).

Photon flux: 10'* Ph/s

Band Pass: 10™

With standard focusing

Beam size at sample/detector: 10um (V), 100 um (H)

Divergence at sample/detector: 0.02mrad(V), 0.04 mrad (H)

With microfocus

Beam size at sample/detector: Sum diameter. Divergence at sample/detector: 0.05 mrad

Beam size at sample/detector: 0.5um diameter. Divergence at sample/detector: 0.5 mrad

Positional stability: 1 % RMS during 1-10 seconds

4. The tentative layout

A scheme of the beam line has been outlined below:

camera

'Waxs
detector

ample
Environment

icrofocus

Optics

Undulator Monochromator Focusing
Mirror
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Undulator
e In vacuum undulator. The characteristics of the undulator will be determined at CELLS.

Optics
e A double crystal Si (111) monochromator seems to be adequate (Energy selection and
sagittal focusing).
e A toroidal focusing mirror (vertical and horizontal focusing).

Microfocus

e Pin-hole collimation (5 and 10 pum collimators).

e (lass capillary optics (2um).

e Kirkpatrick-Baez mirror. Commissioning studies on ID13 indicate that a KB mirrors can
provide a beam of about 0.5 pm with a flux of 10" ph/s and with sample to optics distance
larger than that obtained by capillary optics.

e  Waveguide optics (0.1pm x 3 pm).

e Fresnel lenses (0.2 pm with a 10° ph/s flux).

e Beryllium Compound Refractive Lenses. Commissioning studies on ID13 indicate that
BeCRL can provide a highly parallel beam of 5 um with a divergence of only 0.05 mrad and
hence a resolution of 140nm.

Sample environment
The experimental hutch should be large enough in order to place different systems including:
e Scanning set-up: - X/y translation stage: load capacity 50 kg, travel range 100 mm.
- Micro-hexapod: rotation range +5° with 2 prad increment, travel range +6
mm with 0.1 pm increment (x/y/z), load 2 kg.
- Video microscope.
e Microgoniometer: rotating arm; 5, 10, 30 um beam; horizontal sample ¢-axis; on-axis sample
observation.
Temperature furnaces.
High pressure cells.
Heating/cooling stage for DSC (Linkam, Mettler, etc)
Heating/cooling shear cell.
Tensile stretching machine.
Magnetic field.
Electric field.
Stopped flow and continuous flow equipment
Others

The Detectors
Several detectors will be needed in order to cover all the users’ demands including:
e Fast area detector with large data storage capacity and dynamic range for time resolved SAXS
and WAXS experiments like those related to muscle research
e CCD Area detector for SAXS and WAXS (MAR CCD, diameter ~ 300 mm)
e Fast linear one dimensional detectors for WAXS (1-D microstrip gas chamber curved
arrangement) and SAXS (1-D wire detectors) diffractometry.
The optical bench
e The design of the SAXS-WAXS camera and optical bench should be done to cover a spatial
range from 600nm to 0.2 nm.
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ANEXO I: Precise description of some of the supporting Research groups.

1. Group of Dynamics and Structure of Soft Condensed Matter. Instituto de Estructura de
la Materia, CSIC. Serrano 119, 28006-Madrid
Dr. T.A. Ezquerra. Researcher of CSIC imtelS55@jiem.cfmac.csic.es
Dr. D. R. Rueda . Researcher of CSIC emdaniel@iem.cfmac.csic.es
Dr. M.C. Garcia Gutiérrez. Posdoctoral associate imtc304@iem.cfmac.csic.es
Dr.A. Nogales. Posdoctoral associate (emnogales@iem.cfmac.csic.es )
e A. Sanz, PhD Student. emsanz@jiem.cfmac.csic.es
2. Group of Physical Properties and Nanostructures of Polymers. Instituto de Estructura
de la Materia, CSIC Serrano 119, 28006-Madrid
e Prof. F.J. Balta Calleja. Research Profesor of the CSIC embalta@iem.cfmac.csic.es
e Dr. A Flores. Tenure Scientist of CSIC. imtf305@jiem.cfmac.csic.es
e Dr.M.E. Cagiao. Tenure Scientist of CSIC ( imtc402@iem.cfmac.csic.es )
e Dr. F. Ania . Tenure Scientist of CSIC( emfernando@jiem.cfmac.csic.es ).
e [. Puente-Orench. PhD student
3. Group of Molecular Structure and Properties of Polymers. Instituto de Estructura de la
Materia, CSIC. Serrano 119, 28006-Madrid
e Prof. J. Martinez de Salazar.Research professor of CSIC
jmsalazar@iem.cfmac.csic.es .
Dr. J.F. Vega., Posdoctoral Associate. imtv477@iem.cfmac.csic.es
Dr. A. Muioz Escalona . Associate Researcher
Dr. F.J. Ramos .Posdoctoral Associate
Teresa Exposito PhD student
Sonia Martinez PhD student
Sandra Martin PhD student
4. Group of Characterization and Properties of Polymers. Department of Physical
Chemistry. Institute of Science and Technology of Polymers,CSIC. Juan de la Cierva 3,
28006-Madrid.

e Prof. E. Pérez Tabernero. Research Profesor. ernestop@ictp.csic.es

e Dr. R. Benavente. Tenure Scientist of CSIC. rbenavente@ictp.csic.es
e Dr. M.L. Cerrada. Tenure Scientist of CSIC. mlcerrada@jictp.csic.es
e Prof. A. Bello, Research Professor of CSIC

e Prof. J.M. Perefia, Research Professor of CSIC

5. Department of Polymer Physics and Engineering. Institute of Science and Technology of
Polymers,CSIC. Juan de la Cierva 3, 28006-Madrid.

Dr. Marian Goémez, Researcher of CSIC. magomez@ictp.csic.es

Dr. Carlos Marco, Researcher of CSIC.

Dr. Gary Ellis, Tenure Scientist of CSIC . gary@ictp.csic.es

Mercedes Pérez Méndez, Tenure Scientist of CSIC. perezmendez@ictp.csic.es

Dr. Mohammed Naffakh, Post doctoral associate

Diia Nuria Fanegas, PhD student

Diia Zulima Martin, PhD student

6. Packaging Group. Institute of Agrochemistry and Food Technology,CSIC . P.O. Box. 73,
46100 Burjassot. Valencia.
e Dr. J.M. Lagaron. Tenure Scientist of CSIC. lagaron@jiata.csic.es
e Dr. R. Gavara. Tenure Scientist of CSIC. rgavara@iata.csic.es
e P. Hernandez-Muiioz
e A.Lopez-Rubio
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E. Almenar
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7. Dept. of Technology, Area of Materials Universidad Jaume I. Av. de Vicent Sos Baynat
s/n, 12071 Castellon de la Plana.

Prof. E. Giménez , University Full Professor. gimenezt@tec.uji.es
Prof. J.J. Saura Barrreda. University full Profesor

Dr. J. Suay Anton. University Profesor.

Dr. K. Razzaq Habib. Associate Professor

Dr. R. IzquierdoEscrig. Assistant Professor

M. T. Rodriguez Blasco. Technician

L. Cabedo Mas, PhD Student

S. Garcia, PhD Student.

M. P. Villanueva Redén, PhD Student.

8. Group of Synthetic Polymers: Structure and Properties. Biodegradable
Polymers. Department of Chemical Engineering. Universitat Politécnica de Catalunya.
Diagonal, 647, 08028 Barcelona

Prof. J. Puiggali. University Full Professor. Jordi.Puiggali@upc.es
Prof. A. Rodriguez-Galan. University Professor.
Prof. J. M. Fernandez Santin. University Professor
Prof. M. Calvet Cornet. University Professor.

Dr. L. Franco Garcia. University Researcher
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